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convergence of the solution during early parts of the problem. The modifica-

tions are made to develop procedures which optimally use all available meas-

urements and information and to determine the true value of a priori informa-

tion incorporated into an optimum procedure. The Gauss-Newton algorithm

employed is modified such that at each solution iteration an optimum step is

taken along the calculated direction. This is accomplished by a line-search

minimization of the cost function (logarithm of the a posteriori density func-

tion). The previous procedure iterated towards a null in the linearized

gradient of the density function using only step-size bounds. The other modi-

fication examined is the estimation of an observable (three-state) relative-

motion solution during the first leg which is then combined with a priori

information to obtain the full solution after a maneuver. In addition to the

study of the above modifications, multisensor MLE and MAP procedures are

developed which solve the TMA problem using bearing and frequency measure-

ments without own-ship maneuvers. Simulations are run to ascertain the impact

of range, speed, and center frequency a priori information on the numerical

convergence and solution accuracy of the multisensor algorithm.

The modified Gauss-Newton algorithm with optimum step-size calculation

improves numerical convergence for both the MLE and MAP solutions. However,

the use of a priori range estimates does further increase the probability of

convergence as well as decrease the number of iterations required, especially

during periods of poor observability. In addition, the modified procedure

does provide significant improvement in course and speed solution accuracy

during periods of poor observability when a priori range estimates are

included. The three-state relative-motion problem provides an observable

solution which consistently converges with little cost during the first TMA

leg when the full solution is not observable. However, when coupled with a

priori range and speed information and post-maneuver measurements during the

second leg, it does not significantly improve numerical convergence or solu-

tion accuracy over the zero speed initialization. The numerical convergence

and solution quality of the multisensor bearing/frequency algorithm is in

general improved by the use of range, speed, and center frequency a priori

information. This is particularly so for the cases and periods with low

observability and for the use of accurate center frequency estimates.
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ABSTRACT

The investigation of the value of incorporating a priori information

into the TMA solution is continued in this study by computer simulations using

an asymptotically optimum estimation procedure. Two modifications to the

Maximum Likelihood and Maximum A Posteriori estimation methods for bearings-

only TMA are examined with a view toward their capability to improve numerical

convergence of the solution during early parts of the problem. The modifica-

tions are made to develop procedures which optimally use all available meas-

urements and information and to determine the true value of a priori informa-

tion incorporated into an optimum procedure. The Gauss-Newton algorithm

employed is modified such that at each solution iteration an optimum step is

taken along the calculated direction. This is accomplished by a line-search

minimization of the cost function (logarithm of the a posteriori density func-

tion). The previous procedure iterated towards a null in the linearized gra-

dient of the density function using only step-size bounds. The other modifi-

cation examined is the estimation of an observable (three-state) relative-

motion solution during the first leg which is then combined with a priori

information to obtain the full solution after a maneuver. In addition to the

study of the above modifications, multisensor MLE and MAP procedures are

developed which solve the TMA problem using bearing and frequency measure-

ments without own-ship maneuvers. Simulations are run to ascertain the impact

of range, speed, and center frequency a priori information on the numerical

convergence and solution accuracy of the multisensor algorithm.

The modified Gauss-Newton algorithm with optimum step-size calculation

improves numerical convergence for both the MLE and MAP solutions. However,

the use of a priori range estimates does further increase the probability of

convergence as well as decrease the number of iterations required, especially

during periods of poor observability. In addition, the modified procedure

does provide significant improvement in course and speed solution accuracy

during periods of poor observability when a priori range estimates are

included. The three-state relative-motion problem provides an observable

solution which consistently converges with little cost during the first TMA

ix



leg when the full solution is not observable. However, when coupled with a

priori range and speed information and post-maneuver measurements during the

second leg, it does not significantly improve numerical convergence or solu-

tion accuracy over the zero speed initialization. The numerical convergence

and solution quality of the multisensor bearing/frequency algorithm is in

*general improved by the use of range, speed, and center frequency a priori

information. This is particularly so for the cases and periods with low

observability and for the use of accurate center frequency estimates.
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CHAPTER I

INTRODUCTION AND OBJECTIVES

Classical Target Motion Analysis (TMA) from a time series of sensor meas-

urements involves estimating a target track which best fits the measurement

sequence according to some criteria of optimality. When the measurements are

accurate and sufficiently robust to ensure existence of a unique solution, the

problem can usually be solved in a timely manner using a variety of automatic

and/or manual techniques. In many cases of interest, measurements are not

sufficiently accurate and/or not uniquely definitive to arrive at a complete

solution. In those cases, solutions based solely on sensor measurements may

not converge or may require observation intervals that are tactically unac-

ceptable. The addition of a priori information or physical constraints may

provide tactically useful estimates when the solution is not directly observ-

able from only the measurements. This a priori information may take the form

of discrete multiple range and/or speed estimates along with some assessment

of the uncertainty in the estimates. These estimates may be obtained from

acoustic performance prediction, auxillary measurements (e.g., turn count) or

from physical constraints.

This study continues an investigation (reported in Reference 4) of the

value of incorporating a priori information into a TMA solution. Several

statistical and empirical techniques exist for solving the TMA problem which

can incorporate a priori information in some manner. Among the statistical

techniques, the Extended Kalman Filter (EKF) and Maximum Likelihood Estimate

(MLE) are most attractive from a computation viewpoint. Of the two methods,

the EKF has a much smaller computational burden but suffers from errors caused
A €by "boot strap" linearization. For this reason, the MLE was selected as the

baseline TMA algorithm. This is generalized to a Maximum A Posteriori (MAP)

estimate by incorporating the probability density function (p.d.f.) of the a

priori estimates. When the a priori p.d.f.s are multi-modal (as in the

case of discrete range bands obtained from acoustic performance prediction),

the problem is segmented into parallel solutions for each mode. The parallel

solutions ar continued until incorrect alternatives can be dismissed.
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The previous study (Reference 4) investigated the potential value of

incorporating external information such as range, target speed and vertical

arrival angle (D/E) into the bearings-only TMA problem. The formulation of

the TMA algorithm was based on an MLE method modified to incorporate the

external information as a priori estimates of the TMA solution with statis-

tical uncertainty. This Maximum A Posteriori Probability (MAP) estimate and

the original MLE, although not optimum in a minimum estimation error sense,

are asymptotically optimum as the data base increases without bound. The

evaluation approach taken was the direct simulation of both the MAP and MLE

algorithms using common initialization to determine the specific impact of

the a priori information on an "optimal" bearings-only TMA algorithm. The a

priori range information was treated as multiple bands of possible target

range representing the likely propagation paths. The speed information was

unimodal with various assumed uncertainty. The results of Monte Carlo simula-

tions indicated that:

1. A priori range information did not provide the expected improvement

in solution performance over a solution procedure that used the

range information as initial estimates, but it did improve the

numerical convergence of the iteration technique.

2. A priori speed information did improve both solution performance and

numerical convergence.

3. A priori range information with D/E estimates based on assumed prop-

agation path substantially improved the solution performance for

conical-angle measurement (i.e., from a line or towed array),

although more refined estimates would be beneficial.

* Since the principal benefits derived from the use of a priori information

were found to be associated with the numerical convergence properties of the

algorithm, work was continued to explore this aspect in more detail. It was

conjectured that the algorithms previously studied may not optimally use the

a priori information during the first several TMA legs where there is poor

observability. In addition, although at each numerical iteration a step size

1-2



limit was used to aid solution stability, optimum (in terms of maximum a pos-

teriori probability) steps were not used. Because of the large computation

expense incurred when numerical convergence is poor early in the TMA problem

time, it is desirable to explore ways of optimally utilizing all available

information. The objectives of this study are therefore:

1. Determine whether convergence probability and/or execution time of

the MLE and MAP algorithms are improved by the use of an optimum step

size calculation at each solution iteration.

2. Determine the value, with respect to solution convergence and accu-

racy, of utilizing procedures early in the solution to extract only

observable information.

3. Determine the value of a priori range and target speed information

optimally incorporated into the improved algorithms.

4. Address the value of a priori information in a multisensor config-

uration (e.g., bearing and frequency measurements).

The first two areas address improving solution performance during times

when measurements do not support complete, bearings-only TMA solutions.

These "improvements" were incorporated into both the MLE and MAP algorithms.

The first approach involves addition of a line search along the calculated

step direction. The optimum step size is determined at each iteration. In

the second approach, a three-state solution is implemented (in the bearings-

only TMA algorithms) during the first leg where the full solution is not

observable. After a maneuver, thf observable solution components are opti-
mally combined with any a priori information and subsequent bearing measure-

ments to solve the full four-state problem. A multisensor bearing/frequency

TMA algorithm is developed and evaluated using the measurements without own-

ship maneuvers. The influence of a priori information on numerical conver-

gence time reduction and solution accuracy improvement is investigated.

1-3
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These study areas should provide benchmark results covering many of the

problem areas associated with current TMA systems. *The emphasis throughout is

placed on determining the value of external information on automatic TMA solu-

tion algorithms. As in the previous study, the computer simulations are based

on 30 Monte Carlo repetitions. The geometries simulated are typical subma-

rine maneuvering sequences. The magnitude of bearing errors used are repre-

sentative of many passive sonar systems.

'14
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CHAPTER I I

MATHEMATICAL ALGORITHMS AND NUMERICAL APPROACHES EMPLOYED

2.0 PROBLEM FORMULATION AND THE MAXIMUM LIKELIHOOD ESTIMATION ALGORITHM

The basic target localization/motion analysis problem is formulated, as

in the previous study, in horizontal Cartesian coordinates on a North-East

reference frame. The TMA solution, assuming a target with constant course and

speed, is completely defined by the four-dimensional state vector, x(tk), at

some time, tk, along with its state or position keeping (PK) equations.

xl(tk) target position East of origin at tk

tk x2(tk) target position North of origin at tk
x3 East component of target velocity

x 4 North component of target velocity

1l0t k-tO0 0

xk) = kx(t0); *k 001 0O(2

0 0 0 1

The solution is equivalently represented (at a given time) relative to own

ship by the target range (R), course (C pe a e i

in turn, are functions of x(tk).) ped(T ndbaig(0,wih

1 2

I-I

p 4 in turnxare(functins ofxx(tk )
R(tk) = LEx1(tk) - Xo1t) +x(t ) -Xos(tk))j (3)

CT = tan-'(43 )

2-1



VT= (x2 + x2) (5)

[xltk - Xs (tk)

B(tk) = tan x2(tk) X (t (6)

L 2

los(tk) is the own-ship Cartesian state vector at time tk.

The TMA solution algorithms studied are the Maximum Likelihood Estimator

(MLE) and Maximum A Posteriori (MAP) statistical estimation procedures. For

the bearings-only case with a priori information, this amounts to determining

the state estimate x which minimizes the cost function defined as the negative

logarithm of the joint a posteriori probability density function for the meas-

urement sequence 0m(tk), k=1, N. That is

vjNi 0 (7)iI x=x -

where

NJN (m(tk) " (tk)) (R(to) ITO) 2 (VT "70)o ( (tk) + 2 8)

k=1l kk

and where K0, V0 are the a priori values of range and target speed with

assumed Gaussian uncertainties OR, aV . The details of this formulation, as

well as the Gauss-Newton numerical procedure for its solution, are described

in Appendix A of the previous study report (Reference 4).

The essence of the Gauss-Newton method used previously and modified in

the present study involves a numerical iteration sequence to solve Equation
(7) N

(7) and thereby achieve a local minimum of the function J . The standard

iteration algorithm obtained by expanding the gradient in a multidimensional

Taylor series about a previous or initial solution ; (tk) is:

x+l (tk) =x(tk) + a[0 < a < 1 (9)
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where "a" is the scalar step size of the iteration, is the gradient vector of
N -(tk ) and^ Z is the expected value of the second partial (or Hessian)

matrix of JN at

= VxZJ N  (10)

*1= E[VxL~jN] (11)

*Z is also Fisher's Information Matrix for the estimation problem, and its

inverse represents a lower bound on the covariance matrix of the solution when

] evaluated at the true solution. Equation (9) is solved by Gaussian elimination

at each iteration step until a stopping criterion, based on the normalized
magnitude of the vector x+(tk) - Z(tk), is satisfied. The derivations for
the calculation of Z a an and of the solution x(tk) at each time step are

given, as well, in Appendix A of Reference 4.

The present study investigates two modifications to the previously used

Gauss-Newton algorithm for the MLE/MAP solution for bearings only TMA. An

optimum step size, a, is calculated at each iteration of Equation (9) along

the calculated Gauss-Newton step ([4 A]'x ). The previous procedure merely

limited the magnitude of the solution step of each Gauss-Newton iteration. In

the second approach, a three-state relative motion solution is implemented

during the first leg, where the full solution is theoretically unobservable,

of the bearings-only TMA problem. In addition, a method for bearing/frequency

multisensor TMA is developed and evaluated without own-ship maneuvers using

the same numerical approaches.
4

2.1 OPTIMUM STEP SIZE CALCULATION

During the previous study, the step size for each solution iteration

(Equation 9) was limited to a physically appropriate maximum size. This was

done to facilitate convergence by not allowing the solutions to make wild
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oscillations by continually overshooting the optimization surface minimum due

to poor observability (shallow minima) or linearization errors in the solu-

tion calculation. The solution step was normally selected as the Gauss-Newton

correction vector (with a=1), unless its normalized vector magnitude was

greater than some predetermined limit, in which case the correction was

reduced to meet the limit, i.e.,

1 if C2 < W2

a - 2 (12)

CJ otherwise

where

1 7

W2 + _

and where

a 2 0 0 0

0 o 0 0
0 1 , and a1, a2 are defined constant weights.o 0 ao 0

0 0 0 o

The locus of points which generate a constant c define a spheroid whose radius

is a1 in the x1 , x2 plane and a2 in the x3, x4 plane, and whose :enter is at

the previous solution. The surface e=1 therefore defines a small region about

the previous iteration. When c2 < 1, the iteration process is assumed to be

converged and x+(tk) is the final solution.

Although this step size limiting scheme did improve convergence, it also

was found to reduce the advantage attributable to a priori information. To

determine the extent to which the numerical procedure impacts the comparison,

2-4
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it was decided to use an optimum step size calculation to determine the con-

vergence properties for solutions obtained both with and without a priori

information. The difference then should define more accurately the value of a

priori information.

The optimization of the step size parameter "a" of Equation (9) is

accomplished by a one-dimensional optimization (line search) along the Gauss-

Newton direction, based on minimizing the cost function. Therefore, the opti-

mum step size, a*, is that value of "a" between amin and amax which minimizes
JN(a) along the direction on the optimization surface defined by the solution

]-i The minimum is determined by the combination of a Fibinacci search

and a quadratic fit to iN(a). The limits of search are

amin =1/

2, if > 2

a max W/e, otherwise. (13)

The Fibinacci search reduces the interval containing the minimum to

1/4 (amax - amin ) by comparing the value of JN for selected intervals. The two

end points and center value of this interval are then fitted to a quadratic

function for which the minimum is calculated by

jN(al)(al - a') + jN(a2)(a! - a) + J N(a3)(a - a)

J (al)(a 3  a2) + JN(a2 )(a1 - a3) + JN(a 3)(a2 - a,)

'.4

which is the minimum of a quadratic function fitted by Lagrangian interpola-

tion. The step size "a" to be used in the solution iteration is then

amax, if a* < amin or a* > amax

1 , if a* > 2 and amax > 1 (15)

a* , otherwise.
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When convergence is achieved (el < 1), "a" is then calculated as the value mini-
mizing J between amin=O and a max=2 along the solution direction.

i
2.2 THREE-STATE SOLUTION

I During the initial leg of bearings-only TMA, the full solution is not

theoretically observable. Even during the first few legs, after one or two

maneuvers, observability is poor, especially for convergence-zone ranges. To

obtain useful information during the early stages of the solution when observ-

ability is poor, a three-parameter solution was calculated and used together

with the a priori information to solve the full four-parameter problem. Three
possible approaches that were considered are relative motion, constrained

range and constrained speed. The relative motion solution was selected

because it is directly applicable to both MLE and MAP methods. There is no

subset of the four Cartesian coordinates which is directly observable without

own-ship maneuvers. One can observe bearing and all derivatives of bearing at

some reference time (to). A three-state solution which defines all observable

information consists of bearing and a pair of orthogonal velocity components

normalized by range. The velocity components which most naturally relate the

derivatives of bearing are the cross range and down range velocities (i.e., RA

and 9, respectively). In this formulation, the solution vector at time t0 is

where

o k o/Ro (16)

The bearing acceleration at "to" is given by

0o  -2A o  (17)
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Note that is not a suitable coordinate because the actual bearing time
function is not representable by a quadratic polynomial. The three coordi-

nates presented above allow exact extrapolation to any time (t) as long as

neither ship maneuvers. The expression for bearing at any time (tk) can be

developed by simple geometry as

B(tk) = 0 + tan " ( Atk)
1 + OAtk

Atk = tk -to (18)

The normalized range at tk is

P(tk = R(tk) 1 (19)

k) 7 tk) + (1 + POAtk)

Expressions for A(tk) and (tk) can be obtained by differentiating Equations

(18)and (19).

A(tk) = k/p2 (tk) (20)

(tk) = {O + (2 + 2)Atk)/P2(tk) (21)

Note that Equations (19) through (21) are not required to solve for .(tO ) but

allow one to extrapolate an estimate at "t0" to any other time. The solution

procedure for estimating the three-state solution (r(to)) is a three-state

MLE algorithm using the modified Gauss-Newton iteration procedure. The gra-

dient of O(tk) with respect to n(tO ) is readily shown to be
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M1

atk cos a(tk)
P(tk)

Atk sin B(tk)

jP(tk)

With B(tk), P(tk) defined in Equations (18) and (19). Thus, the iteration

equation for the relative motion solution is

i n.+l(to )  -- n.(to) + aAnL (23)

where Ant is the solution of

+ 0An =0 (24)

with

N

S(mtk) - tk)Vnt (25)
ak=0

and

N
= V n^ (tk)V(tk). (26)

8k=0

lea" is the optimum step size weight calculated using the procedure developed for

the full solution. The iterations continue until 2 < 1 or the maximum number

of iterations is reached.

2 JAA 2  (27)
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with

01 = .010

a2 = al/T

The relative motion solution continues until own ship maneuvers. At that

time, the relative motion solution is combined with a priori information to

generate a four-state initialization solution. The relationships between the
relative motion solution, target speed and target range at time tk is a func-

tion of initial range (R0).

R(tk) = R0 I(I + P0Atk) 2 + (OAtR) (28)

V2  = 060 - Vos sin(s 0 - C0 ))2 + (R0 - Vos cos( - C0 ))2 (29)

The MAP solution can be optimized directly, since minimizes the sum squared

bearing residuals for any value of R0. Then one can find the value of R0 which

minimizes the a priori terms in the cost function subject to the constraint of

Equation (29). Let

prio (R 0 " -o) + (30)
Ja priori 2a' 2a

R 0 Vo (0

where I and V are a priori estimates of range and speed and 2 0 and a are

the respective variances of the estimates. Using Equation (29), V can be

explicitly defined as a function of R so the minimization is a one-

dimensional problem. When a priori speed measurements are available, the min-

imization must be performed numerically. When only range information is

available, then V=0 and aV represent a physical constraint on practical target

speeds. In that case, the optimum range estimate is

2-9
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_ R V %i 0 cos($ - Co) - Ao sin(80o

t 
V

2 0~~o2 -0~o2 (31)

This procedure generates an initial solution for the second leg of the TMA

problem, which is based on solving for the information observable from the

bearing data using a modified Gauss-Newton MLE algorithm, which is then opti-

mally combined with a priori information to generate a complete solution.

This procedure should provide the optimum solution available from the first

leg if the a priori model is correct. Since the relative motion solution is

independent of range, it is common to all propagation path assumptions. If

the combination of relative solutions with a priori range is performed for all

path assumptions, it may be possible to determine the correct path by examin-

ing the speed estimates given by Equation (29). This would depend on geometry

and bearing accuracy. For example, a high bearing wate, 'Irtct-path geometry

would be distinguishable from a convergence zone but a closing geometry may

not resolve the correct path.
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2.3 BEARING AND FREQUENCY MULTISENSOR TMA

For bearings-only problems, own ship must maneuver to obtain a full TMA

solution. When additional measurements are available, such as range rate

(from Doppler analysis of frequency measurements) or bearings from another

array, it may not be necessary to maneuver. Convergence without maneuvers,

however, may be too slow for tactical considerations, and thus the use of a

priori information can potentially be of value in reducing solution converg-

ence time. This aspect of the problem can be investigated by TMA simulations

using the MLE and MAP algorithms modified to accept multisensor data. Note

that maneuvers were not precluded for this case but were not considered

because the problem would be similar to the bearings-only problem. Also, they

did not provide additional insight to the value of a priori information.

An algorithm for the solution of a bearing/frequency multisensor TMA is

developed using the MLE/MAP approach. The problem formulation is the same as

that for the bearings-only case, i.e., a four-state horizontal solution in

Cartesian coordinates, except that frequency measurements are used along with

bearings, and the test runs are made without own-ship maneuvers. There are

five solution parameters since the base frequency (fo) (without Doppler

shift) must be estimated. A procedure is developed in the Appendix to opti-

mize f0 as an explicit function of the estimated range rate (a function of the

state solution), the frequency measurements and the a priori estimate of f0
The value of incorporating a priori knowledge of f0 is therefore evaluated

along with that of range and speed.

The development of the computations for the bearing/frequency MLE (or

more specifically MAP) approach with a priori knowledge of the base frequency

is given in the Appendix. The MAP algorithm using additional a priori infor-

mation (range and speed) is formed by incorporating into the a priori proba-

bility density function (p.d.f.), developed in the Appendix, the appropriate a

priori p.d.f.s. This results, as in the bearings-only case, in additive terms

in the log likelihood ratio for the state vector:

i R = + LR + 1 - RO'2 + V7 o V0)
2  (32)
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where JLR is the log likelihood ratio (cost function) from Equation (20) of

the Appendix.

The first and second gradients of JLR with respect to the reference state

vector x(tO) are required for the Gauss-Newton solution procedure. The calcu-

lations for the gradients of JLR are derived in the Appendix. The gradient

calculations for the range and velocity a priori terms are the same as in the

bearings-only algorithm except for the second gradient of the a priori veloc-

ity term. When speed is unknown a priori but is bounded by physical con-

*straints, the speed estimate is zero and the sigma represents an average speed

(or one-half of the maximum speed). The a priori velocity term in Equation

(32) would be

(A
V2(to) x2(to) + x2(to )

LO V0 0

The second gradient of J is then
1o

T 0

I°v ] o (34)[2a^
aV

where I is the 2x2 identity matrix. This expression for the second gradient

is unfortunately not consistent with that used in the bearings-only cases.

The expression presented in the previous study was developed for use with a

priori speed estimates and does not collapse to the correct expression when a

priori speed is not available. Fortunately, the speed term does not affect

the solution in that case, when only bearing inputs are observed. For bearing

and frequency observations, the frequency measurements are related to veloc-

ity and it was found that the velocity components of the * matrix formed a

singular matrix when the incorrect second gradient was used. This did not

occur with the bearings-only inputs. During investigation of this problem, it

became apparent that MLE should be formulated (when no a priori information is

available) by incorporating range and speed bounds in the cost function as I
2-12 I



R2(tO) V2(to )

LE "MLE (35)
+a _2max

Where Rmax and Vmax are chosen to bound the expected range and speed. This

form would lead to a * matrix of the form

1

max
= MLE + (36)i o 1

0 V,_
max

This would have the properties of the Marquardt Gauss-Newton algorithm using a
physical constraint. This procedure was not evaluated but it will guarantee a
positive definite 4# matrix and will not bias the solution if Rmax and Vmax are

chosen correctly.

2-13

I-l



CHAPTER III

SIMULATED TMA SCENARIOS

3.0 OPERATIONAL SCENARIOS

iThe operational scenarios simulated for the present study are basically

the same as those described in the previous report (Reference 4). Own ship to

target ranges from 10 to 109 kiloyards were modeled covering direct, first and

seconid convergence zone (CZ) acoustic propagation paths. The acoustic propa-

gation properties assumed are realistic, yet general enough to represent many

different oceanographic conditions. The target-ship courses used, which

remained constant over a given run, were 146 degrees and 256 degrees. These

present an initial broadside (crossing) and closing aspect, respectively.

Table 3-1 summarizes the propagation paths and initial true target ranges as

well as the initial range estimates and standard deviations used in the TMA

computer simulations.

Table 3-1. True and Assumed Acoustic Propagation Paths and Range Values

TARGET COURSE PROPAGATION TRUE PATH TRUE TARGET ASSUMED RANGE URRANGE RANGE 0
(deg) PATH (kyd) (kyd) (kyd) (kyd)

Direct 0-30 10, 20 15 7.5
256 1st CZ 45-55 54 45 4.5

(closing) 2nd CZ 90-110 109 90 9

Direct 0-30 10, 20 15 7.5
146 1st CZ 45-55 46 55 5.5

~(crossing) 2nd CZ 90-110 91 110 11

Initial true bearing was 56 degrees for all runs. Own ship had an initial

bearing of 0 degrees and maneuvers consisting of standard 60-degree lead/

60-degree lag with leg times of 5 minutes duration and turn rate of 2 degrees

per second. Both own ship and target maintained a constant speed of 10 knots.
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3.1 SIMULATIONS

Simulations were run in three phases. These were the bearings-only case

with optimum step size calculation, the bearings-only case with a three-state

relative motion solution during the initial TMA leg, and the bearing/

frequency multisensor case with no own-ship maneuvers. Each simulation of all

three phases was run with 30 Monte Carlo repetitions, and with run times of

15 minutes for direct-path true range and 30 minutes for the CZ true range

cases. Measurements of bearing or bearing and frequency were input to the TMA

problem every 20 seconds, and solutions calculated by the MLE or MAP algorithm

every minute. Bearing measurement error for the 20-second averages was

unbiased with a8 = 0.2 degrees for all but a few of the bearings-only runs which

had a8 = 0.5 degrees. Frequency measurements were expressed as normalized Doppler

shifted values of the true center frequency (f0 = 1) using the true simulated

range rate values. The frequency measurement error standard deviations (ofm)

were 10"3 and 10-4 , again normalized by the center frequency. The noise com-

ponent of each measurement time series was simulated from a Gaussian pseudo-

random number generator, with an independent sequence used for each Monte

Carlo repetition.

3.2 A PRIoRZ ESTIMATES

Initial values for range, speed and center frequency with uncertainties

were defined for use as solution initialization and a priori estimates. The a

priori range values and uncertainties assumed in the various runs are listed

in Table 3-1. Initialization for the position coordinates of the solution are

calculated from these assumed range values and the first bearing measurement.

The velocity terms are initialized as zero since no a priori course informa-

tion is assumed. The assumed mean center frequency (T0) is taken as the true

value for the a priori runs and as the first frequency measurement when no a

priori knowledge is assumed. A priori values for velocity and center fre-

quency with their uncertainties that were used in the simulations were:
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Velocity: case 1) V0 = 0; =v 15

2) V0 = 10; oV0 =4

3) V0 = 10; oVO = 2

Center Frequency: case 1) To = 1; Ofo = 10-,

2) To = 1; afo = 1-
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CHAPTER IV

DISCUSSION OF SIMULATION RESULTS

4.0 OVERVIEW OF RESULTS PRESENTED

The TMA scenarios described in the previous chapter were simulated with

the overall objective of evaluating the importance of external information in

achieving accurate and timely target motion solutions. The MLE and MAP pro-

cedures using the numerical algorithms derived in Chapter II were chosen as

the methods to best demonstrate the potential utility of such information.

The improvement attained by incorporating a priori statistical estimates of

range, speed and center frequency is shown by comparing the solution results

of Monte Carlo simulations using the MAP estimation procedure to those using

the MLE. The MLE procedure uses the external information merely for initial-

ization of the iterative numerical solution and not as part of the estimation.

The contribution of the a priori information to the bearings-only and

bearing/frequency solutions is measured by the improved accuracy and reduced

convergence time achieved. The measures of solution accuracy are obtained by

calculating the mean and standard deviation of errors over the Monte Carlo

repetitions. Measure of potential solution quality from the information

available is obtained from the error bounds as calculated from the eigen-

values of the inverse Fisher's information matrix for the estimation problem.

These error-bound estimates are the Cramer-Rao lower bounds on solution

accuracy when evaluated at the exact solution. Solution convergence is

defined as the reduction of the error bounds below some defined level.

A Improvement in numerical convergence is measured by the reduction of computa-

tional burden of the algorithm as represented by the number of Gauss-Newton

iterations required for each solution. Numerical convergence probability is

determined from the number of Monte Carlo repetitions at each solution time

which do converge, defined by satisfying the stopping criteria within

21 iterations.
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The results presented in this chapter are separated into three sections,

based on the numerical procedure being evaluated. The first two sections

present the results for evaluation of modifications to the bearings-only

MLE/MAP algorithm which was developed in the previous study. Since the value

of a priori information may be highly dependent on the particular numerical

methods employed, improvements to the algorithms to most efficiently use all

available information were studied. The effect of the numerical modifica-

tions on solution accuracy and convergence is, therefore, evaluated along

with and within the context of the incorporation of a priori information. The

numerical modifications studied are, respectively, calculation of an optimum

step size at each Gauss-Newton iteration by a cost function line search and

solution of a three-state, relative-motion problem during the first TMA leg.

The third section presents results of simulations which were run to evaluate

the incorporation of a priori information into a multisensor (bearing and fre-

quency) MLE algorithm without own-ship maneuvers.

4.1 BEARINGS-ONLY MLE USING OPTIMUM STEP-SIZE CALCULATION

The results of the previous study's simulations indicated that the prin-

cipal advantage of a priori range information is related to the numerical con-

vergence of the solution procedure rather than its ultimate accuracy. Modifi-

cation of the Gauss-Newton algorithm to improve numerical convergence without

a priori information may therefore affect the observed value of incorporating

such information into the algorithm. The Gauss-Newton algorithm used previ-

ously was modified, as described in Section 2.1, to optimize the step size

taken at each iteration in the calculated direction with respect to the actual

cost function. Previously, the step taken was the full solution step of the

linearized optimization, subject only to a magnitude limit, without regard to

the change in the actual cost function. It was conjectured that optimizing

the step size would reduce the numerical convergence time of the algorithms,

as well as improve the solution quality early in the problem. This, however,

may in turn either negate any improvement previously provided by incorpora-

tion of a priori information or may enhance such improvement by more optimally

using the available information.
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The results of Monte Carlo simulation runs are presented using the modi-

fied Gauss-Newton procedure. The TMA scenarios simulated are as described in

Chapter III and are the same as in the previous study. Both closing and

crossing target aspects are analyzed with own ship executing maneuvers. For

the direct-path case (range = 20 kiloyards) runs were made with assumed a

priori ranges in the direct, first CZ and second CZ propagation paths. CZ

runs have the same true and assumed paths. In addition, direct-path runs were

made with true range of 10 kiloyards and assumed range in the direct path.

One direct-path run was also made with bearing error standard deviation of

0.5 degree (all others were with 0 = 0.2 degree). Additional first CZ runs

were made including speed a priori information with estimate equal to the true

target speed (10 knots) and standard deviations of 4 and 2 knots.

4.1.1 Preliminary Study of the Step-Size Optimization

Before considering the results of the Monte Carlo simulation runs, a pre-

liminary analysis of cost function behavior versus step size and of its mini-

mization is carried out. In addition, the computational cost for the inclu-

sion of the step-size optimization procedure in the MLE algorithms is esti-

mated. This estimate may be used to weigh any benefits from the procedure

against its added cost.

The modified Gauss-Newton method solves the non-linear optimization

problem with an iterative series of linearized solutions, calculated until

satisfying a convergence criterion. The change in the solution at each itera-

tion may be expressed as the vector difference between the previous solution

and the present one. This solution update is given at each iteration by:

A A

Ax = ! = -CWI VxJ (1)

where Ao is the solution vector calculated by the Gauss-Newton procedure as

described in Section 2.1, and is the magnitude of the step actually taken
A

from the previous solution in the A direction. Under the assumptions used
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to ensure convergence of the modified Gauss-Newton procedure, the change in

the cost function, AJ, may be modeled approximately as a quadratic function

of the solution change vector using terms of the multidimensional Taylor

series expansion

&] =VT *1 ^T T(2

This may then be expressed as a function of the step size, using Equation (1):

I AtJ :-aV~j@ixVxJO -: VxJI-1VxVTJ*'JIVxJ

61= vT *Ix + a2  V T J*-1V
x F-O _' x x

SAj ^T _ _ _+ Tr T

Sis (T a + L r) (3)

where
A^T T

r = (4)

for ae(O, 11.

The step-size limiting procedure used in the previous study set a to a value

between the limits of 0 and 1 based on a maximum allowable magnitude for Ax

defined by reasonable physical constraints. The modified procedure deter-
mines a by a numerical line search minimization of J(x,a) at each iteration.

This procedure may be modeled analytically by minimizing Equation (3) with

respect to a. This yields

1/r;r>1

n ; otherwise (5)
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when subject to the constraint ae[0,1]. The actual procedure used, however,

constrains the step size ocz[min, %max ] where amin > 0 is the minimum step

taken and %lax < 2 is the step-size limit, whose values are determined as

described in Section 2.1.

In preliminary runs of the algorithm in both the original and modified

form, the behavior of J(a) was observed at several intervals along the calcu-

lated solution direction. These observations showed that at numerous itera-
tions the minimum occurred at a's near to or less than zero. This was most

prevalent before complete solution observability but also occurred later in

the problem. Since the quadratic model above (Equations (2) through (4)) does

not predict optimum solutions for a < 0, this result reflects a domination by

higher order, (unmodeled) terms indicating that J(a) is not approximately

quadratic at the trial solution. In fact, if the "optimum" step is taken, the

solution collapses to the previous solution. The calculated Gauss-Newton
solution is therefore not always consistent with minimization of the cost

function. To solve this problem, it was found that taking a limited step in

the Gauss-Newton solution direction allowed eventual convergence even though

the cost function was not minimized. This observation clearly shows the value

of step-size limiting for solution stabilization. However, oscillation

between poor solutions may still occur preventing early convergence. Step-

size optimization should help convergence further by directing the Gauss-

Newton solution towards consistency with the cost function minimum (except

under the noted singular conditions). Minimization of the cost function in

the vicinity of the converged solution may also improve solution accuracy,

especially early in the problem when solution updates are large.

Inclusion of a priori information appears to stabilize the Gauss-Newton

solution such that wild oscillation would not occur even without step-size

limiting. This is clearly seen in the cost function values at and in the

direction of the calculated solution. Optimization of step size would there-

fore not be expected to improve convergence of the MAP algorithm to the same

extent that it would for the MLE. However, solution accuracy may be improved

during the problem time before solution convergence in the same manner as

without a priori information.
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Estimates for the computation cost of the step-size optimization are

made by running simulations for various problem times without the Monte Carlo

statistics calculations. Cost estimates are in the form of computer proces-

sing (CPU) time. Although such estimates are approximate and the true cost

may vary for different data sets and TMA conditions, as well as for different

line search algorithms and codings, they may be helpful for rough comparisons

between the added calculations' cost and any measured benefit. These test

runs produced estimates for the added cost of the step-size calculations to

the Gauss-Newton algorithm of 15 to 25 percent. In addition, these direct

* propagation path simulations indicated that the savings in computation time

from better convergence of the modified algorithm did not make up for the

added cost of the procedure. However, an enhanced quality of early solutions

may be gained.

4.1.2 Numerical Convergence Properties of the Modified Gauss-Newton

Algorithm

The numerical convergence properties of the modified bearings-only algo-

rithm are shown in Figures 4-1 through 4-9 for all TM geometries simulated.

The number of Monte Carlo repetitions, out of the 30 run, which meet the

numerical convergence criterion are plotted for each calculation time along

with the average number of Gauss-Newton iterations required for convergence.

These measurements represent, respectively, the probability of obtaining a

converged solution at each problem time and the computational requirement for

convergence. In each figure, the MLE and MAP solution results are presented

for cases assuming the correct propagation path and using a measurement

bearing-error standard deviation of 0.2 degree. Results are presented for

direct, first CZ and second CZ propagation path cases without use of a priori

speed estimates. For the first CZ cases, results are also given for the MAP

solution with a priori speed estimates with standard deviation of 4 and

2 knots (Figures 4-6 and 4-7). Direct-path results are given for cases with

initial true ranges of 20 and 10 kiloyards. The results from the use of the

step-size limiting algorithm are also included for the direct-path, crossing-

course case (Figure 4-2b). Comparison of the two procedures for the other
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geometries may be made using the results given in Section 3.1.3 of the previ-

ous report (Reference 4).

The results of numerical convergence frequency versus problem time for

the Monte Carlo repetitions shown here generally agree with those of the pre-

vious study. They clearly demonstrate the benefit derived from incorporation

of a priori range and speed inputs towards increasing the probability of

numerical convergence. This is particularly noted for the difficult geome-

tries and during the early parts of the problem. For the direct-path cases,

the MAP algorithm frequently converges on the first leg while the MLE almost

never does. Since the complete solution is not observable, this behavior is

expected and does not represent a significant advantage to the MAP solution.

After the first leg, convergence is virtually equivalent for both cases. The

MAP solution does converge more frequently during the maneuver. The first and

second CZ cases with the closing target course geometry show a marked increase

in convergence probability due to the use of the MAP algorithm. This is seen

during the second through fourth TMA legs of the first CZ case and throughout

the entire run for the second CZ case.

The use of the optimum step-size calculation appears-to increase the

probability of convergence for both the MAP and MLE algorithms over the step-

limiting method. The measured improvement in convergence due to a priori

information use therefore remains approximately the same.

The previous study concluded that the major computer burden of the algo-

rithms is associated with the unsuccessful search for a (numerically) con-

verged solution, and therefore the MAP solutions require fewer computations

than the MLE simply because more solutions converge within the maximum itera-
tion limit. This conclusion is only partially substantiated by the results

shown here for the algorithms using optimum step size. The average number of

iterations required for convergence versus problem time is plotted for all

converged Monte Carlo repetitions. These numbers therefore exclude any com-

puter cost due to a solution failing to converge with the alloted Gauss-Newton

repetitions. In general, the results for the crossing-course geometries show
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little difference in average iteration number between the MAP and MLE solu-

tions. However, those for the closing course, a more difficult TMA geometry,

show the MAP to converge on average with fewer iterations. This is particu-

larly the case during the early legs and with the CZ cases.

4.1.3 Solution Behavior for Correct-Path Hypotheses

The earlier results from MAP and MLE algorithms, not employing step-size

optimization, indicated that the major value of a priori range information was

improved numerical convergence of the solution rather than improvement of the

intermediary and ultimate solutions. Therefore, it was observed that

although comparison was made to MLE algorithms which benefit from good initial-

ization using the a priori range estimates, the value of using correct a

priori range information in a MAP algorithm was disappointing. Little gain in

solution accuracy and solution convergence time was measured.

Figures 4-10 through 4-13 show the solution errors as a function of prob-

lem time for simulations employing step-size optimization and using the cor-

rect propagation path assumptions for solution initialization and a priori

estimates. Parts a, b and c of each figure give the range, speed and course

errors, respectively, averaged over all numerically converged Monte Carlo

repetitions. The solid and dashed lines represent the root mean square errors

of the MAP and MLE solutions respectively, and the symbols (e and +) represent

the mean errors at each problem time. Results are presented for the direct-

path (20-kiloyard range) case with closing course geometry and for all three

propagation paths (direct, first CZ and second CZ) with crossing course geom-

etry. The CZ results for the difficult closing geometry are basically very

poor and are not presented. The direct-path results show only a very small

(if any) decrease in range and course RMS error due to a priori information

use and no difference in solution convergence time. The speed RMS error for

the MAP algorithm is considerably lower during the second TMA leg. A very

small negative bias in the MAP speed error is still noted at the later legs

after convergence for the closing-course case. The results for the first and

second CZ cases with crossing course show a more pronounced decrease due to

4-18

I



- - MAP RMS ERROR
MLE RMS ERROR

b I. S MAP MEAN ERROR
+ MLE MEAN ERROR

0'

Ad +

-rm /t47 R/T UN (MIN)

Figure 4-10a. Range Error for Bearings-Only Method With Optimum-Step,
Direct-Path, Closing -Target Course



'U

-MAP RMS ERROR

- MLE RMS ERROR

* MAP MEAN ERROR

+ MLE MEAN ERROR

s-

+ +

o+

0 
+ +

1 l

402
* 10 Ia as-, ,

'r IM INT RLoN "I Ao

Figure 4-l0b. Speed Error for Bearings-Only Method With Optimum-Step,
Direct-Path, Closing-Target Course

4-20 .

1I

-2" -9-



MAP RMS ERROR
MLE RMS ERROR

o MAP MEAN ERROR
MLE MEAN ERROR

II

300• ! +

3o o, * ,

i+

.+ +

*0
t44

0+i~
-0

U

-60

'1I , I I I A/)

Figure 4-10c. Course Error for Bearings-Only Method With Optimum-Step,
Direct-Path, Closing-Target Course

4-21



MAP RMS ERROR

MLE RMS ERROR
MPMEAN ERROR

+ MLE MEAN ERROR

-3

I4.

to Is,

TIMU INTO RUN LrtlN)

Figure 4-11a. Range Error for Bearings-Only Method With Optimum-Step,
Direct-Path, Crossing-Target Course

4-22



I I I I

j MAP RMS ERROR

"" MLE RMS ERROR

* MAP MEAN ERROR

+ MLE MEAN ERROR

Fiur 4-b Spe ro o ernsOl ehdWt piu-tp

a I ----.

-42

_ I I I I I
S I. 15 i.F 30

Figure 4-l1b. Speed Error for Bearings-Only Method With Optimum-Step,
Direct-Path, Crossing-Target Course

4-23



- MAP RMS ERROR

MLE RMS ERROR

* MAP MEAN ERROR

+ MLE MEAN ERROR

0O- . .

+ 4
00

0 °

-4-0

I I I.~**j ... .. .. I I I

-TVM E iNTO IV)N (l'lIIN )

Figure 4-11c. Course Error for Bearings-Only Method With Optimum-Step,
Direct-Path, Crossing -Target Course

4-24



\ ? I

MAP RMS ERROR

.MLE RMS ERRORj * MAP MEAN ERROR

S"+ MLE MEAN ERROR

400

I S 0

1~~ o ** *- S-F-

I

4-25. 4

f • - I , I 1 I
10'8"I I,,S 2o 25 So

, "li'ME iNTO RUN LtvlIw)

Figure 4-12a. Range Error for Bearings-Only Method With Optimum-Step,
First CZ Path, Crossing-Target Course

4-25



+ML " I 1

I 4"

+ MAP RMS ERRORI /
I MLE RMS ERROR

0 MAP MEAN ERROR

+ MLE MEAN ERROR

+ +

-I4

-VI

I11I I

,. Ioii 20 Us" 30

T)~'W INTO RLW (IN)

Figure 4-12b. Speed Error for Bearings-Only Method With Optimum-Step,
First CZ Path, Crossing-Target Course

4-26



IL

MAP RMS ERROR

.... - MLE RMS ERROR
* MAP MEAN ERROR

-. ,+ MLE MEAN ERROR
A

+ +

+. + +

4 -34-

I 1I I0
03

-riM Cr I/TO AWu/ MIA/)

Figure 4-12c. Course Error for Bearings-Only Method With Optimum-Step,
First CZ Path, Crossing-Target Course

4-27

- i "

Fiue41 Cus ro fo Berns-nyMehdWthOtmu-tp



MA RM ERRO

qL M RO

S ____MAP MSA ERROR

+ MLE MEAN ERROR

a +

-3 + +. +

. + 4

-,+ +

14. 20 dozs

71ME INTO RVN (MIN

Figure 4-13a. Range Error for Bearings-Only Method With Optimum-Step,
Second CZ Path, Crossing-Target Course

4-28



IMAP RMS ERROR

MLE RMS ERROR

* MAP MEAN ERROR

+ MIE MEAN ERROR

0 0

+
-4.. +2.-.

116.

(A

33

4-29



'. MAP RMS ERROR

\ MLE RMS ERROR

- ' MAP MEAN ERROR+ V/

+ MLE MEAN ERROR

| . -" •
4..

o I 4. +

++

5'1 10 15J..3 3

-Time INTO R AI ( I /N)

Figure 4-13c. Course Error for Bearings-Only Method With Optimum-Step,
Second CZ path, Crossing-Target Course

4-30



the MAP algorithm in range, speed and course RMS error in the early legs.

This difference disappears at or before solution convergence. The range mean

errors for both the MAP and MLE methods are biased even at later problem

times, however in opposite directions.

The above results, therefore, do show that for an algorithm using an

optimum step-size calculation the incorporation of a prior! information does

yield, for some geometries, significant improvement in early leg solution

accuracy. However, ultimate solution convergence and ultimate solution accu-

racy are not enhanced.

4.1.4 Error Lower Bounds and Solution Convergence

In the operational environment, values for the TMA solution errors are

not known. It is important, therefore, to estimate solution performance and

convergence status. An estimate for Fisher's information matrix (* matrix) is

calculated as part of the MLE and MAP solution procedure. The inverse of this

matrix, when calculated using the true solution, is the Cramer-Rao lower bound

on the solution error covariance. Therefore, this can be used even when cal-

culated at solution estimates, to indicate sensitivity of the solution to

additional measurements and to place a relative estimate on the solution qual-

ity theoretically obtainable. The covariance lower bound matrix is converted

to independent scalar parameters by partitioning the inverse matrix (*-1) into

2X2 position and velocity submatrices and computing their eigenvalues. The

square root of the larger elgenvalue for each set represents the major axes of

the position error ellipse and of the total velocity error ellipse. These are

theoretical lower bounds on range error and total velocity vector error,

respectively.

The major axes for the range and velocity error bounds are plotted in

Figures 4-14 through 4-18 for the direct, first CZ and second CZ path cases.

The crossing geometry results are included for all three path cases, whereas

the closing course results are for only the direct and first CZ cases. The

error bounds for both the MAP and MLE solutions are included (solid and dashed
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lines) along with the Monte Carlo standard deviations for solution times with

a high (>67 percent) probability of convergence (e and +). The observations

made from the error-bound plots are essentially the same as those for the

algorithm without step optimization presented in the previous report. The

error lower bounds are lower for the MAP solutions than those for the MLE,

particularly during the early legs. The measured increase in solution accu-

racy for the MAP algorithm, noted in the previous section but not in the pre-

vious report, is therefore due to better utilization of the a priori informa-

tion by the algorithm modified for step optimization rather than due to any

enhancement in the best solution theoretically achievable. Consequently, the

solution convergence behavior for both the MAP and MLE remains unchanged by

the modified algorithm.

Table 4-1 presents a summary of the numerical and solution characteris-

tics for the modified bearings-only MLE and MAP algorithms. Results for simu-

lations of each geometry/path hypothesis are included. Included in the sum-

mary for each simulation are averages of the numerical convergence measure-

ments, estimate for solution convergence time and the RMS error characteris-

tics of the solution at the determined convergence time. The criterion for

solution convergence was defined as in the previous study as the time at which

the velocity major axis error bound reaches 1 knot (10 percent of actual

velocity magnitude). This is somewhat arbitrary but is sufficient for compar-

ison purposes. The range error bound and the Monte Carlo solution error sta-

tistics may be used to confirm the solution convergence time and the converged

solution's validity. The values presented in Table 4-1 may be compared with

those in Table 3-1 of the previous study for the algorithms without step opti-

mization.

Using the statistics presented in the table comparison between the MAP

and MLE algorithm may be made and thus the value of a priori information may

be estimated. The number of converged Monte Carlo repetitions and the number

of Gauss-Newton iterations per repetition averaged over all solutions of the

runs are indicative of the relative computation costs of the runs. The solu-

tion convergence time and the RMS errors at that time give a relative indica-

* tion of the solution's timeliness and quality. In general, the use of a priori
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information in the algorithm with step optimization decreases the whole run

average computation cost of obtaining numerically-converged solutions for

both closing and crossing-course geometries and for all propagation paths.

The CZ cases for the crossing-course geometry, however, are only slightly

affected. Solution convergence time appears to be unaffected by the use of a

priori estimates. However, in the simulations used here, the defined converg-

ence criterion often is not reached by the end of the problem time. Solution

accuracy, as defined by RMS error averages across Monte Carlo repetitions,

appears to be inconsistently improved by using the MAP algorithm. The

crossing-course geometries show little difference in RMS range, speed and

* course errors at the convergence times between the MAP and MLE solutions. The

direct and second CZ cases with closing-course geometry have slightly

decreased range and speed RMS error from the use of correct a priori range

information, and the first CZ case has decreased speed RMS error from a priori

speed estimates. It should be noted that the error estimates compared are

those at the solution convergence time only and that the results of Sec-

tion 4.1.2 should be used for further comparisons. In addition, the error

estimates based on the Monte Carlo repetition averages have limited useful-

ness since 30 repetitions are probably not sufficient for accurate

estimation.

4.2 BEARINGS-ONLY MLE WITH THREE-STATE, RELATIVE-MOTION SOLUTION

The calculation of a three-state solution to the bearings-only TMA prob-

lem was incorporated into the MLE/MAP algorithms in order to optimally utilize

the available data when the full solution is not theoretically observable.

The results presented in this section are from simulations using the modified

Gauss-Newton algorithm (with step optimization) with a range-normalized,

relative-motion solution calculated during the first 5-minute TMA leg. This

observable three-state solution, along with any range and/or speed a priori

information, is used for initialization of the full, four-state solution

after the first maneuver. The details of the three-state solution methodology

and the optimum bootstrap procedure is presented in Section 2.2. This sec-

tion presents an evaluation of the use of this procedure both in obtaining
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useful TMA solutions during the first leg and for initializing the full, abso-
lute solution. As in the previous section, the impact of the algorithm modi-

fication on the optimum use of a priori information is studied.

4.2.1 Numerical Convergence Properties of the Modified Gauss-Newton Algo-

rithm Three-State Solution Initialization

Plotted in Figures 4-19 through 4-21 are the measurements representing

convergence probability and average computation cost of Monte Carlo simula-tions of the MLE/MAP algorithms with a three-state, relative-motion solution

calculated for the first 5 minutes of each run. The number of converged Monte
Carlo runs at each time for the full solution are also plotted for comparison

purposes. The average number of iterations for the four-state solution runs
are not plotted since they are very nearly equal to the values for the merged

solution runs already plotted. The simulated TMA runs presented are the

direct-path cases for both closing and crossing-target courses and the second

CZ path case with crossing-target course. All of the runs presented have

bearing measurement error standard deviation of 0.2 degree, use correct-

assumed propagation paths for range initialization and a priori information,

and use no velocity a priori estimates.

The results for the direct-path runs indicate that the use of the three-

state solution as initialization to the observable full solution does not

improve the number of Monte Carlo runs which converge nor decrease the number

of Gauss-Newton iterations required for convergetice. It does, however, pro-

vide observable three-state solutions during the first leg with high proba-

bility of numerical convergence and low computational cost. This provides a

great advantage over the four-state solution which has very low convergence

probability and high computation cost during the initial leg because of its

lack of observability. The three-state solution, therefore, provides for

better use of available data and a priori information when the full solution

is unobservable. In Figure 4-21, the use of the three-state solution during

the first leg of the second CZ, crossing-course case is again shown to provide
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improvement during the first leg but no improvement to the later, full-

solution calculations. In fact, the probability of convergence is reduced

when the three-state solution is used for initialization. In the CZ cases,

the three-state solution should really be calculated beyond the first leg when

the observability remains poor. Unfortunately the three-state solutions are

distinct from one leg to the next and cannot be continued.

4.2.2 Error Behavior of the Calculated Solutions

The range, bearing, speed and course RMS errors over the Monte Carlo

repetitions are plotted in Figures 4-22 and 4-23 for the direct-path (true and

assumed) simulations using the MLE/MAP algorithms with three-state solution

calculated during the first leg. The full-solution values from which the

plotted errors are calculated are determined during the first leg from the

relative-motion solutions combined with own-ship motion values and the a

priori estimates or initializations. For the MAP algorithm, these calcula-

tions are made in an optimal manner with the a priori estimates weighted by

their uncertainties. Also plotted are the RMS error values for the MAP Monte

Carlo repetitions of the completely four-state algorithm. These values are

also included in Section 4.1.2. These plots indicate no difference in solu-

tion quality for any of the parameters after the first leg. Therefore, the

three-state solution initialization to the MAP algorithm does not appear to

enhance solution accuracy. During the first leg, the MAP algorithm with the

three-state solution has greater range RMS errors and basically no difference

in bearing, speed and course errors as compared to the full solution. This

occurs in spite of improved convergence properties during this leg before the

full solution is theoretically observable. In addition, the measured useful-

ness of a priori information is the same between the two procedures.

4.2.3 Summary

Table 4-2 summarizes the Monte Carlo statistics for the TMA solutions of

the MLE and MAP algorithms with and without the range-normalized, relative-

motion solution calculation during the first leg. The convergence properties i
4-44|I
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and the RMS errors are given for the solutions calculated at the end of the
first leg (5 minutes) and at the beginning of the second leg (6 minutes).

These solutions, therefore, represent the initialization to and the calcula-

tion of the first solution after a maneuver (i.e., after the problem becomes

theoretically observable). The cost and value for the use of the three-state

solution initialization, as well as that for the use of a priori information

may be studied. This summary basically substantiates the findings of the pre-

vious two sections. The only real advantage of the three-state solution as

implemented here is in obtaining numerically converged solutions with rela-
tively low computation cost when the full solutions are not observable. A

* more important influence on the quality of the initial, observable, full-

solution is the use of a priori estimates.

4.3 BEARING/FREQUENCY MULTISENSOR MLE WITH THE MODIFIED GAUSS-NEWTON

ALGORITHM

Results are presented from simulations of bearing/frequency (Doppler)

TMA without own-ship maneuvers using the MLE and MAP procedures modified to

accept multisensor measurements. The numerical solution method used is the

modified Gauss-Newton algorithm with step optimization. The mathematical

development of the estimation procedure and details of the algorithm used are

given in Chapter 2 and the Appendix. The TMA simulations presented are the

direct-path cases (10-kiloyard range) with closing and crossing initial tar-

get course and the first CZ case with crossing target course. The bearing

measurement error standard deviation is 0.2 degree for all cases, and the

frequency error standard deviations used are 10-2 and 10" in relative units

to the mean center frequency (T0 = 1). The a priori information utilized by

the MAP estimation procedure and for initialization of both the MLE and MAP

solutions consist of range (propagation path), velocity and center frequency

estimates with their uncertainties. For all runs the range a priori estimatfE

is the true propagation path, the velocity estimate is zero with magnitude

limit defined by the standard deviation of 15 knots, and the center frequency

estimate is the true value with standard deviation weights of 10-2 and 10- 4.

The measurements describing the numerical convergence behavior and solution
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quality of the procedure are plotted and discussed in the following sections.

Again, the results are analyzed with regard to an evaluation of the benefits

provided by a priori information use. Comparisons are made among the MLE

algorithm, the MAP without accurate center frequency information (Ofo = 10- 2)

and the MAP with accurate center frequency estimate (ofo = 10-'), denoted
SMAPf, for each TMA geometry and the two frequency error standard deviations.

4.3.1 Numerical Convergence Properties of the Algorithm

The number of converged Monte Carlo repetitions and the average number of

Gauss-Newton iterations per repetition are plotted in Figures 4-24 through

4-26 for each calculation time. These measurements represent the probability

of, and the computational cost for obtaining convergence of the MLE and MAP

algorithms. The results for all cases indicate a general enhancement

(increased likelihood and decreased cost) of the numerical convergence

derived from the a priori information as used by the MAP algorithm. The use

of a center frequency a priori estimate with low uncertainty (the MAPf runs),

in particular, provide the greatest improvement. This solution provides

nearly complete convergence with few required iterations throughout all runs

simulated. The difference between the MAP and MAPf runs is particularly large

in the runs with the more accurate frequency measurements. It appears, there-

fore, that in order to optimally use the measurements along with the a priori

information, an accurate center frequency estimate is important. Without

this, the numerical convergence of the MAP algorithm is only slightly better

than that of the MLE algorithm for runs with the more accurate frequency

measurements (afm = 10").

4.3.2 Accuracy of the Calculated Solutions

The accuracy of the MLE, MAP and MAPf solutions are presented in Fig-

ures 4-27 through 4-32 for the direct and first CZ path cases, each with fre-

quency error standard deviations of 10"1 and 10"1. The RMS and mean errors

over the Monte Carlo repetitions are plotted for the range, speed and course
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values calculated from the algorithms' solutions. The realized solution

accuracy, as demonstrated by the RMS errors plotted in the figures, is gener-

ally improved by the a priori information as used by the MAP algorithm. In

I addition, the inclusion of an accurate center frequency estimate in the a

priori information (the MAPf solution) further improves the solution quality.

The errors in the solutions for the direct-path, closing-course case

(Figures 4-27 and 4-28) are reduced for the most part by both the MAP and MAPf

procedures. Most of the reduction of range error early in the problem comes

from the use of the MAP algorithm; however, later in the run the most signif-

icant reduction comes from the additional use of an accurate center frequency

estimate. Speed and course errors, however, tend to benefit from both through-

out the run. The same case with more accurate frequency measurements

(a fm = 10-) does not benefit from a priori information as greatly. Range and

speed errors show close to zero decrease from the use of MAP, and the course

error improvement is significant only in the early problem stage. For the

direct-path, crossing-course case (Figures 4-29 and 4-30) the MAP procedure

provides improved solution accuracy, again early in the problem. However,

little difference occurs after the first 6 or 7 minutes into the run. The

improvement due to the a priori information again is less for the case with

the more accurate frequency measurements. The first CZ, crossing-course case

again shows improvement in solution accuracy using the MAP and MAPf proce-

dures. The exact relationships among the three procedures are, however, diffi-

cult to see due to the poor convergence of the MLE algorithm for most of the

run.

In general, the a priori information improves solution accuracy to a

greater degree for cases with the more difficult geometries and less accurate

measurements. In other words, the more observable and accurate the solution

is with measurements alone, the less impact any a priori information will

have. It should be noted how well the MAP procedure with accurate center fre-

quency does for all geometries and measurement errors throughout the entire

run. The mean errors additionally show a high degree of average accuracy with

generally very low bias.
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4.3.3 Theoretical Range-Error Lower Bounds

Theoretical lower bounds for the range-error standard deviations are

represented in Figures 4-33 through 4-35 for the simulations run. The plotted

values are the major axes of the position eigenvalues for the inverse psi

matrix computed during the Gauss-Newton solution procedure. These estimates

for range-error lower bounds may represent the relative potential solution

quality achieved from all available information from the different solution

procedures. In addition, although the values are averaged over Monte Carlo

repetition the lower bound estimates are independent of the number of con-

verged repetitions and do not, in actuality, vary significantly between repe-

titions. An indication of the value of a priori information to solution qual-

ity and solution convergence may be observed. The range RMS errors are also

plotted in order to compare the theoretical values to the solution quality

actually achieved by the algorithms. The plotted results again indicate the

value to range accuracy of using the MAP and MAPf procedures over the MLE,

particularly in the cases with the lowest solution quality. Figure 4-33 shows

the reduction in range error bounds achieved from the use of the MAP algorithm

and the accurate center frequency estimate for the direct-path, closing-

course case. The effect is seen to be much lower for the case with greater

frequency measurement accuracy. Relatively little difference is observed in

Figure 4-34 among the different algorithms for the more observable direct-

path, crossing-course geometry. The first CZ, crossing-course case plotted

in Figure 4-35 shows improvement due to the MAP algorithm but very little from

the use of accurate center frequency estimates.
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CHAPTER V

SUMMARY AND CONCLUSIONS

The value of incorporating a priori information into a TMA solution was

investigated as described in Reference 4. The conclusion of that study, based

on Monte Carlo simulations of Maximum Likelihood and Maximum a posteriori

estimates, was that a priori speed information was very beneficial in early

solution performance; however, (crude) a priori range estimates primarily

* aided the initial numerical convergence of the solution iteration procedure.

In effect, the a priori range variance produces a positive definite mean

Hessian matrix which allows numerical convergence.

5.1 IMPROVED ITERATION PROCEDURES

This study examined two procedures for improving solution convergence

during early parts of the prob.lem to ascertain whether the original solution

procedure was optimum. The previous solution procedure iterated towards a

null of the gradient of the a posteriori density function (or likelihood

ratio) using step-size constraints to bound the iteration excursions. In this

study, the procedure was modified to minimize the logarithm of the a

posteriori density function (or the log likelihood ratio) using a line search

along the direction of the Gauss-Newton step. Several useful results were

obtained from that study.

The line search does not always produce convergence to the minimum solu-

N4 tion. At times when observability is poor, the line search occasionally pro-

duces a zero step which would retain the original solution and, therefore, not

incorporate the added measurements. It was found that a heuristic procedure

should be used in that case, which involves taking a limited step in the

Gauss-Newton direction without regard for minimizing the cost function. This

procedure eventually resulted in obtaining a minimum solution. In effect,
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when this procedure is invoked the cost function is not approximately quadra-

tic at the current solution iteration and one must step away from that solu-

tion before proceeding with the normal optimization process.

The modified Gauss-Newton procedure does improve numerical convergence

for both MAP and MLE solutions, but the MAP solution still converges more

often during periods of poor observability. The net cost of incorporating the

line search is increased even though the number of iterations is reduced. The

increased cost is not significant and is within the tolerance of program opti-

mization.

The modified Gauss-Newton procedure does result in a significant improve-

ment in course and speed solutions during periods of poor observability when a

priori range estimates are included. When sufficient data is processed, the

* isolutions converge to the same values regaidless of numerical procedure and

essentially without regard to use of a priori range information.

The other procedure tested was the estimation of an observable (three-

state) relative motion solution on the first leg which is bootstrapped to a

full solution on the second leg. The procedure can be applied with or without

a priori information by using a line search on range during the second leg.

It was found that the relative motion solution can be solved consistently with

little cost because it is observable. It can be coupled with a priori range

or speed information to generate single-leg solutions for tactical informa-

tion. It was found, however, that numerical convergence on the second leg was

not significantly improved by using the bootstrapped solution rather than a

zero-speed initialization. However, the relative motion situation is still a

usefu'l feature because it can be computed along with the full solution and be

used for tactical inputs when the full solution does not converge. One

approach that was not studied was estimation of range by combining relative

motion solutions from individual legs. There were insufficient resources

available to pursue that study but it would be similar to the widely used

Ekelund procedure. In any event, it is recommended that one incorporate a

priori information on the first TMA leg by solving for the relative motion
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solution and combining that with the a priori information in a least-squares

sense. This conclusion is based on numerical convergence behavior of the

three-state and four-state solutions. After the first own-ship maneuver, the

four-state problem should be solved if it converges because the previous rela-

tive motion solution is invalid after a maneuver.

5.2 BEARING/FREQUENCY MULTISENSOR TMA

The using of both bearing and frequency (Doppler ranging) measurements

can allow solution of the TMA problem without maneuvers. In the context of

this study, that problem was examined to ascertain the value of a priori esti-

mates of range, speed and/or base frequency. The multisensor MLE and MAP pro-

cedures generally performed quite well when bearing and frequency measurement

were accurate. For all cases simulated, a priori information provided enhanced

numerical convergence of the algorithm with the use of an accurate center

frequency estimate providing the greatest improvement. The improvement in

convergence was particularly large for the runs which had both the more accu-

rate frequency measurements and an accurate center frequency a priori esti-

mate. Without the latter, the value of the other a priori information was

minimal. The solution accuracy, as measured by the RMS errors, was improved

by both the use of a priori range information and an accurate frequency esti-

mate. However, in this situation the runs with the less accurate frequency

measurements were those which were most improved. This result was reflected

as well by the theoretical range lower bounds on range error standard devia-

tion. Solution accuracy was most enhanced by the a priori information for the

cases with difficult geometries and less accurate measurements.
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APPENDIX

DEVELOPMENT OF GRADIENT COMPUTATIONS FOR BEARING AND FREQUENCY MLE

Assuming that independent Gaussian bearing and frequency measurements

(Bm, fm) are made at discrete times, tk, the log likelihood ratio for the mul-

tiple observations is

N

r (Bi(k) - )
B k1

N

(+ 2f F, (fm(k) -
k=1

+ log(2=2aa) (1)

where A is the conditional probability density function for the joint measure-

ment sequences, given the solution (x(k)) and the true base frequency (fo).

The target solution vector is contained in B and n.

B~k) = [,1(to) + (tk - to)x3(to) - xlos(tk)1(2

Lx2to) + (tk - to) 4(to) - x2os(tk)J

n(k) 1 - k(k) (3)

A(k) = (x3(to ) - X3os(tk))sin 8(k) + (x4(to ) - ;4os(tk))Cos B(k) (4)

When a priori knowledge of base frequency has a Gaussian distribution, the a

priori information can be incorporated and a likelihood ratio developed which

is conditional only an x. Note:

A P{B f (5)
1 f

0!



Then, if Pfo(f0) is the a priori probability density for f 0

Alp lPf (f0 )df 0

p P{Bm~Ix ffmI/x (6)

Pff I/X f Pl{./, Pfo (f0 )df 0 (7

for

p ~ ) 1 g (f 0  _ f ) 2

P0 (f 0 N2-wf e -2cf70(8

and

Pff I/x e-(fm - fn) (9)

m (2waf)N/2 2qo(9

then

(0)

=f ( 2 aZN/.x fe- df 0(10)

0

I~f N (f (k) -f 0(k)) 2  (f 0 f)2 (1

k=1 fa

.4 N f2(k) ~

1(f0)= r f + f4.+ t3n(k)

* - o + N fm(k )T(k) fo (2
0 fk=1



(fo-f)2 N f(1(k3 )10 fo

0: 00 0I(fo  - + -f + -2 -- (13)
f~ k =1 f f
0 0 f

where O( N:To + E fm(k)ln(k)fo k=l
fo a2 (14)

f+ E n(k)

ao k=1

is the a posteriori mean and therefore the least squares estimate of fo" ItsI conditional variance (given x) is

2a -
a^ (15)

J- 2 N

Oz a (k)
fo k=1

Note:
2

ef Na fofo o T I (fm(k) - Ton(k))n(k) (16)
o T o + f k = 1

Equation 13 can be manipulated to an alternate form:

a a 2

(f) (f -f) N (fm(k) -fo(k))'  (fo 0 fo )  '17

fo k =10

The integral in Equation (10) over fo can be computed as

1 C°ox (fm(k) f+ 0ko- O)

Pf }Ix (2 N2af) /2 fo fo ) (18)
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The log likelihood ratio for x is therefore

N

-ZnhV = z 1 (Bm(k) " B(k)) 2

k=1

N
+ 7 (fm(k) - ))2

k=1

+(19

+a fo0 - 'o)2

.9n + ,-frn-(k (19)
! fo k=1

with N
F4 (fm(k ) - on(k ))n(k )

k=o +  2k= N (20)

-F- (~nk)f0 k=1

The last term is much less sensitive to x than any other term and can be con-

sidered to be constant. The gradient of JLR = -ZnA', with respect to _

is therefore

N

VXJLR or EB (Bm(k) B(k))VxB(k)
B k=1

rN
I

(fm(k) -^ f0n(k))Vxr1(k)]

+ (k)(fm(k) - f0 (k))
k=11 ' 4



Of -o )I Vx (21)f 0 o 0 f Xo
0 J

The last term can be shown to be identically zero. Thus:

N (B~)-8(k))

VxJLR = [E - Vk _B(k)
- k=1 C

f (Im (k) - 0 n(k))
+ o 0 V xn(k) (22)

f

The second gradient of JLR is

N VxB(k)VXB(k) N (B B) T^

VxVx LR E a o _
k=1l k=1 B

N

+f 4 : v Xn(k)V>1n(k)

k-1

v'f N

E (f - 2f 0 qlk))V x nlk)

k-1

f N
0 E  (fm(k) f^n(k))(VxVxn(k)) (23)
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with
N (fm(k) - 2f on(k))Vxn(k)

Vxf= f N.- (24)

k=1 + E rn2 (k)

o k=1

The expected value of the second gradient is required for the Gauss-Newton

procedure. Under the assumption that x is correct, then one can compute after

tedious algebra:

E{x x LRI

N

k=1 -

B F, + A~ V f(k T k

' =~~k1 -k--

+ aS[
af

( j r vxnu) ( k)V x n(k)

- p(k) + Uaf- I
k=I 0_

+

6

I...



N

E n(k)VXV n(k)
k=1S(25)

n20 + af

j=1 fo

The last two terms can be dropped because they are inconsequential when com-
pared to the others when of/fo is small (e.g., of the order of It/c). The equa-
tion can be simplified without hampering convergence to

N

LR Vxk(tk)VxBGtk)
Ik=1 - -

i+

N 
(26)

4 The term in brackets is positive semidefinite, since all quadratic forms

reduce to

N2
N ~ n(k)a

k k=1

Cfok ~ k- 0 i2k
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where ak is the projection of any vector on VxI. This quantity is zero onlyk x
for a vector which is orthogonal to the gradient at all time steps. Otherwise

this quantity is positive. The second term in brackets represents the infor-

mation lost by not knowing the actual base frequency. If of>>Of or when N

becomes sufficiently large, this information loss disappears.

The gradients of B and I must be evaluated.

A-(t [ x1(t°) + (t - 0 3 (t o)- los(k) (27
tk) t [x2(to) + (tk to)x4(to) x2os(tk)] (27)

A(tk) = (x3(to) - x3os(tk))sin B(tk) + (x4(to) - x4os(tk))cos B(tk) (28)

cos i(tk)

VxI(t 0)B(tk) 1~ B(t k A (29)

~(tk- t)sin A~k

A0

Vx(to) (tk) sin(tk . to)r xt)(tk) (30)
-Ntke)sin xits

A

cos B(tk)

4m

Vcr (x3(tO) - X3os(tk))cos Bitk) - (x4(tO) - X3os(tk))sin 8(tk) (31)

S!The modified Gauss-Newton solution for the step In x is1

Ax = -a*-1V J = ax (32) 1

8



The projection of this step along the gradient is

'aXTVj -aVJ*-,v = -a TV,

N
=a[ Tf  + N k (k= (33)

nf _ (k) +

k=1f0

with

vTk :SVBkx (34)

and

=VTA Ax &4 + v AB(5
k x k-!o v cr (5

) M = X3 sin + Ax4 cos B (36)

A = (afc)/f o  (37)

Unless both ABk and k are zero at every time step, the projection is always

positive.

The accuracy of the base frequency estimate (f0 ) depends on both error in

the measurement and error in the solution (x). Let f0 be the true center fre-

quency and wk be the frequency measurement error. Then

N
Ef (f,(k) -+o;(k) (,)

fo 0" fo -Tro f fo +  f N.4(38)

+ k
of0 k=1

9



N

T ro o+ f + fon(k) - o(Tn(k)

gk=l
f 0 2 N (9

• ( o - o f -W

2 N

-f f) .4. + 1:(wk - T0 (ri(k) - (kf)r(k)
f o f k=1 (40)

a f2

fo k=l
and

fOf N f2 (41)

12(k) + 7

k=l 0

Swhere N n(k)%xA(k)

q k=1 (42)

N q^a2
2 of

tk=10 0

101

- ,e J ,
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